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In the first part of this paper p-p elastic scattering data at 90°c.m. near the Coulomb-nuclear interfer
ence minimum are analyzed. The energy of the minimum of the 90° cross section is found to be at 0.38243 
±0.00020 MeV. The nuclear s-wave phase shift, defined with respect to wave functions which solve the Cou
lomb plus vacuum polarization potential problem, is found to be 5o^=0.25501 ±0.00020, at the precise 
energy 0.38243 MeV. In the second part of the paper the phase shift just obtained is used, in conjunction with 
four very accurate phase shifts from 1.4 to 3.0 MeV, to determine the parameters of the s-wave effective-
range expansion. If this expansion is cut off after three terms (quadratic fit) then the scattering length is 
found to be a = — 7.815±0.008 F ; the effective ranges=2.795±0.025 F ; and the shape-dependent parameter 
P=0.028±0.014. However, it is argued that the first three coefficients in the actual power-series expansion 
of the effective-range function are not known this well, and in particular, P may be very different from the 
actual coefficient occurring in the k* term. 

I. INTRODUCTION 

THE recent availability of very accurate low-energy 
proton-proton cross-section data makes it possi

ble to determine the energy dependence of the s-wave 
phase shift to a considerably greater accuracy than 
before, and in particular to determine the curvature of 
the effective range function plotted versus energy. 

In the first part of this paper (II) p-p cross section 
data1'2 at 90°c.m. near the Coulomb nuclear interference 
minimum are analyzed. The data are summarized in 
Sec. I IA and a brief account of the theory presented in 
Sec. II B. The method used to take into account the 
geometry of the experiment and multiple scattering in 
the gas is discussed in Sec. II C. Section II D merely 
states that molecular effects are completely negligible 
even though they do smear out the center-of-mass 
energy. In Sec. II E, the results of the analysis of the 
experiment1 are presented. 

In part III, the phase shift obtained in part II is used 
in conjunction with accurate low-energy s-wave phase 
shifts obtained from Wisconsin data3,4 to examine the 
energy dependence of the s-wave phase shift. The 
scattering length, effective range, and shape-dependent 
parameter are evaluated using a quadratic fit to the 
effective range function, and a discussion is presented 
of the relation between these parameters and the actual 
coefficients of the power series expansion of that 
function. 

Appendix A presents some empirical formulas for the 
vacuum polarization quantities which are used in the 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

t Preliminary accounts of this work were reported at the 
Pasadena and Tucson meetings of the American Physical Society 
[Bull. Am. Phys. Soc. 8, 605 (1963), and 9, 154 (1964)]. 

1 J. E. Brolley, Jr., J. D. Seagrave, and J. G. Beery, Phys. Rev. 
135, B1119 (1964). 

2 A similar experiment with less precision was performed by 
D. L. Cooper, D. H. Frisch and R. L. Zimmerman, Phys. Rev. 
94, 1209 (1954). 

3 D. J. Knecht, S. Messelt, E. D. Berners, andL. C. Northcliffe, 
Phys. Rev. 114, 550 (1959) and more recent data to be published 
(private communication from P. F. Dahl and D. J. Knecht). 

4 H . P. Noyes, Phys. Rev. Letters 12, 171 (1964). 

analysis, and Appendix B contains a simple discussion 
of the Coulomb plus s-wave nuclear amplitude at 
90°c.m. 

II. ANALYSIS OF LOS ALAMOS EXPERIMENT 

A. Summary of Experimental Results 
to be Analyzed 

The experiment which provided the data for the 
low-energy analysis of this paper has been described in 
detail elsewhere.1 Basically, it consisted of a coincidence 
measurement of the elastic cross section at 90°c.m. at 
several energies near the interference minimum (see 
Fig. 1). 

The resulting data are presented, along with the 
errors associated therewith, in Table I. These numbers 
were obtained from Table I of Ref. 1. N(E) represents 
the number of coincidences per unit incident charge, 
and hence has the significance of a relative cross section. 
Since no attempt was made to measure the temperature 
of the target hydrogen,1 its density is not well known, 
and therefore comparisons with the absolute value of 
the cross section cannot be made accurately. In Sec. E 
such a comparison is discussed nevertheless, and it is 
shown that there is no contradiction. 

As discussed in Ref. 1, there is reason to believe that 
the data at 0.37283 MeV are not as reliable as the error 
quoted for it (due mainly to statistics) might indicate. 
With this in mind we have performed the analysis both 
with and without this point included. The difference 
between these two sets of results will be displayed 
later on. 

B. Theory 

Proton-proton effective range theory with explicit 
inclusion of vacuum polarization effects has been 
treated earlier by Heller.5 We shall here summarize the 
principal results of that work using similar notation. 

The unsymmetrized scattering amplitude (in the 

6 L. Heller, Phys. Rev. 120, 627 (1960). 
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TABLE I. Relative cross sections measured at six energies.* 

E (LAB) MeV 

FIG. 1. Center-of-mass differential cross section at 90° versus 
the laboratory energy of the incident proton. The Mott cross 
section is shown and the actual cross section computed from the 
parameters which are found in Part I I to give the best quadratic 
fit to the effective range function. The region between the two 
arrows is the energy range of the experiment (Ref. 1) being 
analyzed in Part I. The insert shows the region near the minimum 
in greater detail. 

cm. system) is given as the sum of three terms 

/ (* )= / . (* )+ /v .p . (») + /* (* ) • (1) 

The cross section is obtained by symmetrizing (anti-
symmetrizing) this amplitude in the singlet (triplet) 
state, and adding | of the singlet cross section to f of 
the triplet cross section.6 

The ordinary Coulomb amplitude is given by 

' . ( * )= 

with 
2k sin2 (6/2) 

_g—2ir) In sin(0/2) (2) 

where v is the laboratory velocity of the incident 
proton,7 and 

k=(MElah/2h*yv 

with M the proton mass. 

6 In Ref. 5, for illustrative purposes, the symmetrized singlet 
cross section was written out explicitly with the approximation 
that the term |/V.P. |2 is negligible. Since in this experiment fc and 
JN cancel each other to a very great extent, one should not make 
that approximation. 

7 We have adopted a suggestion of G. Breit, Rev. Mod. Phys. 
34, 766 (1962), and computed rj in this manner, using the correct 
relativistic velocity of the incident proton. As expected, and 
demonstrated later on, this relativistic effect is almost completely 
negligible at this energy. 

E 
(MeV) 

N{E) 
(arbitrary units) 

0.33766 
0.36248 
0.37283 
0.38348 
0.39425 
0.40517 

52.420^0.847 
16.285±0.155 
10.614±0.159 
8.280±0.093 

10.307±0.088 
16.363±0.139 

a Reference 1. 

The amplitude which describes the effect of vacuum 
polarization is used in the form 

/ V . P . = ( V * ) E (2L+l)rLe^-^PL(cosd), (3) 
L 

where TL, the vacuum polarization phase shift, is much 
less than unity and <TL is the Coulomb phase shift. We 
designate the Coulomb plus vacuum polarization 
potentials as the 'electric' potential, and the wave 
functions which solve that problem as the electric 
functions. 

The nuclear amplitude in general is given by 

fN=(l/2ik)j:(2L+l)e2i^- -co) 

X<*iTL(#XL*- l ) p L ( c o s 0 ) , (4) 

where 8LE is the nuclear phase shift defined with respect 
to the electric functions. The superscript E is used on 
the phase shift defined in this way throughout the 
paper. 

We assume that the only nuclear contribution to the 
singlet amplitude comes from Z = 0, and thus we take 

fN (0) = e^
E smdoEe2iT«/k. (5) 

We have computed the J-wave amplitude predicted by 
one pion exchange and find that it is completely negli
gible (even though the nuclear and Coulomb singlet 
amplitudes cancel each other to a considerable extent). 
The three ^-wave phase shifts were computed as in 
Ref. 4 with the additional simplification that the linear 
combination which is proportional to the strength of 
the central force plays no role at 90°, i.e., we include 
only the one-pion-exchange tensor force. We find it is 
completely negligible, and would still be if the tensor 
force were four times as strong. 

The dependence of doE on energy is represented by an 
expansion of the effective range function. This function 
(treating vacuum polarization to first order) and its 
expansion are given by 

X(k)^C2kl(l+2X0)cotd0
E-ro']+2rjklh(v)+lo(v)l 

1 1 
= h-r0k

2-Pr0
2k*+Qr0

bk«-
a 2 

. (6) 

The quantities ro, X0, and h are defined in terms of the 
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electric functions in Ref. 5, and were computed as a 
first-order perturbation and plotted versus energy in 
that reference. In Appendix A empirical formulas are 
presented for these quantities and for the vacuum 
polarization scattering amplitude as well. h{rj) is the 
same function which appears in the more common 
effective range expansion8 for nuclear phase shifts 
defined with respect to Coulomb functions: 

Hv> 
lrrx-^) r'(ii)-\ 
2LT (-irj) r (iij)J 

•\mj. 

The parameters a, ro, and P are commonly referred to 
as the effective range, scattering length, and shape-
dependent parameter. Also 

C2 = 2wr}/(e2**-l). 

The reason for choosing the interference minimum 
as the energy region for doing an experiment is that the 
great cancellation which occurs between Coulomb and 
nuclear amplitudes (see Fig. 1 and Appendix B) makes 
it possible with just a modest accuracy in the cross 
section, like 1%, to determine the s-wave phase shift 
to ~ 0 . 1 % . See Ref. 8, pp. 100-102 and references cited 
therein for more discussion of this question. 

As we now show, in this energy region the cross 
section is determined almost completely by a single 
quantity, £min, the energy at the minimum of the 90° 
cross section. At these energies the differential cross 
section at 90°c.m. is a function of the energy, and of the 
s-wave phase shift 5, which is itself a function of the 
energy and the effective range parameters which we 
designate collectively by a. 

(7=CT ( £ , $ ) . (7) 

This implies for the first derivative with respect to 
energy 

da da da 68 
— = — ( £ , « ) + — ( £ , « ) — ( E , a ) , 
dE 6E 68 dE 

where the variables in parentheses are the ones upon 
which the corresponding functions depend. 

Writing Eq. (6) as 

X(8,E)=$+yE+fxE*+>-y 

where /?, y, and /x are simply related to the parameters 
a, and differentiating with respect to E gives 

6X dX 68 
—(E,8)+—(E,8)— 
6E 68 6E 

•-y+2»E+' 

Using approximate values for the effective range 
parameters, some of which are already known well from 
previous experiments and others bracketed by theory, 

it turns out that at the energies of this experiment 

\6X\ 
|Y+2/X£+-- - |<< 

giving the result that 

65 

6E 

6X /6X 
_ _ ^ {Efi) / _ ( E j 5 ) = f(E8). 
6E 6E I 68 

Thus, it follows that 

da 

dE 
*g(Efi), (8) 

8 J. D. Jackson and J. M. Blatt, Rev. Mod. Phys. 22, 96 
(1950). 

and the use of identical arguments shows that all 
derivatives of a with respect to energy are functions 
only of E and 8, with no other dependence upon the 
parameters. Expanding a about £min, all derivatives 
evaluated at Emin become functions of Em{n and 
8(Emin)^8min> In addition the total derivative in (8) 
must vanish at Emin, by definition of -Emin. This condi
tion imposes a functional dependence of 6min upon 
Emin. Hence the principal parameter defining the cross 
section in this energy region is £ m i n . If just the 90° 
Coulomb amplitude and the s-wave nuclear amplitude 
are included in the analysis, the relation between 5min 

and Emin can be pursued somewhat further. In Appen
dix B this is discussed briefly. 

However, with vacuum polarization included, the 
explicit dependence of a upon Emin (and such other 
parameters as may enter in a minor way) is not easily 
obtained. On the basis of numerical calculations it can 
be determined that to a high degree of accuracy 

£m i n(MeV) =0.66463+0.03800a+0.00530^o. 

This is valid for P = 0 , but the spread in Em{n obtained 
by letting P vary over a wide range of reasonable values 
is less than 0.2 keV. This is a reflection of the fact that 
the term in the effective range expansion involving P 
is almost completely negligible at the energies of this 
experiment. The term involving Q is negligible. Since 
this is an approximation we prefer to define a new 
parameter exactly by 

<SE=0.66463+0.03800a+0.00530ro (9) 

as well as an "orthogonal" parameter 

£>- 0.03800r0- 0.00530a, (10) 

and carry out the analysis in terms of these two param
eters and P instead of a, ro, and P. We expect that & 
will be determined very well by the experiment, 2D 
rather poorly, and P not at all. We do not search on P . 
Instead, P is set equal to zero [as are all higher order 
terms in Eq. (6)], and later the effect of varying P over 
a wide range of values, from —0.05 to +0 .10 , is con
sidered. This range includes all values of P which are 
known to the authors to have ever been considered for 
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the proton-proton problem. In practice, after choosing 
a pair (8,3D), Eqs. (9) and (10) must be inverted to find 
(a,r0) which are then put into Eq. (6) to determine 8. 

C. Geometry and Multiple Scattering 

Due to the finite size of the volume in which the 
scatterings occur and to the finite size of the detectors 
(see Fig. 3 in Ref. 1), the quantities measured (tabu
lated in Table I) include contributions from a small 
range of scattering angles around 90°c.m. Ignoring for 
the moment the role of multiple scattering (in causing 
somewhat the same effect), we take geometrical effects 
into account in the following manner. 

The theoretical prediction for N(E,a), the number of 
counts recorded per incident proton is proportional to 
an integral over the scattering volume and detector 
solid angle of the theoretical differential cross section. 
The proportionality constant C converts cross section 
to number of counts and is independent of all relevant 
variables. 

i N(E,a) = C / S(E,a,6L)f(rP,eL, ^>L)dhvd^LdQL, (11) 

where S(E,a,dL) = (da/dti)^ sinflz,. The variables r„, 
6^ and <PL are, respectively, the location of the scatter
ing event, and the polar and azimuthal angles in the 
lab system of one of the protons' resultant path. [The 
recoil proton angles are, of course, \T—6L, <PL-\-TT."] The 
energy dependence as well as dependence on other 
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FIG. 2. F(0) is the angular weight function, in arbitrary units, 
for the geometry of the experiment (Ref. 1) being analyzed. S is the 
laboratory differential cross section multiplied by the sine func
tion of the laboratory angle, computed at five equally spaced 
energies near the minimum, using the parameters (a,ro) which are 
found in Part I I to provide the best fit to the data. 

parameters (symbolized by a) are contained in 
S(E,a,0L)- f(tpflL,<pL) is a function of the geometry of 
the apparatus in that / = 1 if both scattered protons can 
traverse the slit system and result in a coincidence 
count; / = 0 if either proton cannot. The integral must 
be taken over ranges of values of rp, 0L, <PL sufficiently 
broad to include all such values for which / = 1. 

The quantity 

(12) F(0L)= f(rP,eL,<PL)d*rpd<pL 

which represents the angular weight function for the 
geometry of this experiment1 is shown in Fig. 2. 

Since S(Eiafii) is symmetric about 0 L = 4 5 ° , and the 
range of scattering angles is small, we may write 

S(Ep,0L) = So(E,a)+$2(E,a) (0z,-45°)2, (13) 

where S0(E,a)=S(E,a,4:5o). 
Hence 

N(E,a) = CZSo(E,a)h+S2(E,a)I2'], (14) 
where 

h=JF(6L)deL, (15) 

(0L-4S°)*F(eL)ddL. (16) 

and 

Since /o depends neither upon E nor a we may write 

N(Ep) = C'So(E,a) 1 + ( - ) , (17) 
So(E9a)\Io/J 

where I2/I0 is simply the normalized second moment of 
F(6£). Also plotted in Fig. 2 is S(E,a,6L) at several 
energies for the values of the parameters which we will 
later find provide the best fit to the data. 

We now ask if there exists an effective angle 6e, 
independent of E and a, such that the value of S(Eya,6e) 
is proportional to N(E,a) with the proportionality 
constant also independent of E and a. Such an angle 
does exist, and can be found from its definition 

C"[So+S* {Be- 45 °)2] = ZS0I0+S2I2]. 

Choosing C"=Io 

ee=^0+(h/hyiK (18) 

The use of the effective angle results in an accuracy for 
the integrated quantity N(Eya) which is very much 
greater than the corresponding experimental accuracy. 
This result also justifies the use of the quadratic approx
imation of Eq. (13). 

Before computing h/h from Eqs. (15) and (16), we 
first discuss the role played by multiple scattering, even 
though it is a very small effect for the physical condi
tions of the experiment.1 

Since the multiple scattering in the apparatus smears 
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FWTH OF SCATTERED PROTON IN 

ABSENCE OF MULTIPLE SCATTERING 

EFFECTIVE PATH OF 
SCATTERED PROTON 
IN PRESENCE OF 
MULTIPLE SCATTERING 

INCIDENT PROTON 
DIRECTION 

FIG. 3. The coordinates used to describe a scattering 
event and the effect of multiple scattering. 

out the angular dependence of the observed results, it 
increases the quantity I2/I0 in a way similar to that of 
finite geometry. Instead of arriving at the detector from 
the same direction (6L, <PL) with which it left the point of 
scattering (see Fig. 3), the scattered proton now reaches 
the detector plane at a new point (and going in a new 
direction at that point, which however, is of no con
cern) . Since the effect is small, we do not try to follow 
the actual path of the proton. Instead we employ the 
following model which provides an estimate of the effect 
of multiple scattering and which can be shown (for the 
slit system of this experiment) to result in an upper 
limit for /2//0. We use a family of straight line "effective 
paths" which produces, at the detector, the same dis
tribution of lateral displacements as that produced by 
the actual proton paths; i.e., we assume that the angular 
displacements (f,7r) shown on Fig. 3 obey the prob
ability distribution 

P(f,7r)^=exp[-(r/fo)2] sinf^Tr, 

where f 0 is the rms multiple scattering angle. 
Now, instead of the function f(*PfiL><pi) which 

described the geometry in the case of no multiple 
scattering, we have a function 

f(tpflL,(PL,tl,7ri,f2,7T2; fo) 

occurring in the integrals (11) and (12). The integration 
is now taken over rp, dL, <PL, f 1, TTI, f 2,^2 with the sub
scripts on f, ir referring to the two scattered protons. 
The function / is evaluated analogously to the case of 
no multiple scattering: If the addition of 0L, <PL, and 
fi, 7ri results in angles 0z,/, <PL/] and the addition of 
(ir/2)—dL, TT+<PL and {"2, ^2 results in angles 0z,2', <pL2

r 

such that the two protons both traverse the slit system, 
then the function / takes on the value of the probability 
of obtaining both f 1 and f 2: 

/ = s b f ! sinf2 e x p [ - GVfo)2- (r2/ro)2]. 

If either of the protons cannot traverse the slit system, 
/=o. 

From Eqs. (12), (15), and (16), the angular weight 
function F(6) and its normalized second moment I2/I0, 
are thus functions of f 0. Shown in Fig. 4 is the sensi
tivity of I2/I0 to variations in f 0 in the region of 
f0=0.05°; this is our best estimate9 of fo for the geom
etry and state of the gas occupying the apparatus in the 
experiment,1 but it is uncertain by a factor of 3. Al
though the integrals in Eqs. (12), (15), and (16) are in 
principle exactly determinable, the values in Fig. 4 
reflect the fact that the multidimensional integrals were 
performed statistically using a Monte Carlo technique. 
It will be shown later that the complete spread of values 
of /2//0, due both to the uncertainty in f 0 and to the 
limited accuracy of the integrations, is of almost 
negligible consequence. 

Another related effect arises from the fact that the 
beam is not perfectly parallel but has a divergence1 of 
0.055°. The resultant smearing is comparable to that 
produced by multiple scattering and is satisfactorily 
included by taking the acceptable range of values for 
I2/I0 to run from 1.13X10"4 to 1.22X10"4 (see Fig. 4). 

Possible scattering by the slits10 has a completely 
negligible effect upon IZ/IQ. Permitting a 200-keV 
proton to travel through a maximum of 4X 10~5 cm of 
an iron slit—a larger distance produces so great an 
energy loss that it would not be counted even if it did 
reach the detector—broadens the angular weight func
tion F(6) slightly, and also permits some new scattering 
angles (up to 2.6° different from 45°, see Fig. 3 in Ref. 1) 
to be detectable. We have determined that these two 
effects increase I2/I0 by less than 1%. 

The relativistic angle transformation (in place of the 
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FIG. 4. The normalized second moment of the angular weight 
function versus the rms multiple scattering angle. The integrals 
defining IQ and 1% were performed by a Monte Carlo technique and 
the bars represent the uncertainties in the answers. 

9 See, for example, H. A. Bethe, Phys. Rev. 89, 1256 (1953). 
10 We thank Professor Breit for calling this question to our 

attention. 
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nonrelativistic one used above) can also be considered 
as an effect upon I2/I0 which is completely negligible. 

We adopt 1.171X 10~4 as the best value of I2/I0, and 
this leads to an effective laboratory angle Qe— 45.62° 
[see Eq. (18)]. 

D. Energy Resolution 

Although the laboratory energies were measured to 
great precision,1 there is a spread in center-of-mass 
energies, due to the zero-point vibrational motion of the 
hydrogen molecules,11 which amounts to approximately 
1 keV (full width). We have investigated the effect of 
smearing the theoretical cross section over this range 
and find that it is completely negligible, even though 
the minimum of the cross section is located to 0.1 keV 
(cm.). 

E. Results of Analysis of the Los Alamos 
Experiment 

The parameters which enter the analysis fall into two 
categories: (i) the geometry factor IZ/IQ, and the shape 
parameter P, which are varied over specified ranges but 
are not searched upon; and (ii) 8, 3), and the normali
zation constant (which converts cross section to number 
of counts), which are searched upon for fixed values of 
the type (i) parameters. 

A least-squares fit was performed, first omitting the 
data at 0.37283 MeV (see the discussion in Ref. 1 con
cerning this point). Choosing I2/I0 equal to 1.17IX 10~4 

(see Sec. C) and P = 0 , the optimum parameters are 

8=0.38242 33=0.142 

with x2=3.48 (two degrees of freedom). Inverting the 

60 
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10 
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FIG. 5. The best fit to the data obtained by integrating the 
theoretical cross section, using the parameters shown on the 
figure, over the geometry of the experiment. Including or omitting 
the point at 373 keV results in best fits which are indistinguishable 
on the scale used here. 
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11 We thank Dr. Critchfield for calling this point to our attention. 

0.5 1.0 

h/lo < j0"4 RADIAN2 ) 

FIG. 6. For each assumed value of I2/I0 (the normalized second 
moment of the angular weight function) the least-squares fit 
defines a range of acceptable values of the s-wave phase shift doE 

at the energy 0.38243 MeV, shown with hachure. The vertical 
lines limit the permitted range of I2/I0 and therefore the area of 
crossed hachure is the region of the plot which the geometry of the 
experiment (and multiple scattering) allows. 

definitions (9) and (10) gives 

a= -7.80 F, ro=2.65 F. 

This fit to the data is shown on Fig. 5. Furthermore the 
energy at which cr(90°) has its minimum is Emm 
= 0.38243 MeV; which is almost identical with 8, and 
the phase shift at 0.38243 MeV is 5(^(0.38243) = 0.25501. 
Of course there is an error associated with each of these 
quantities, and this error will be enlarged by considering 
the whole range of acceptable values of I2/I0 and P. We 
first vary h/h from 1.13X10"4 to 1.22X10"4 (see Sec. 
C), keeping P fixed at zero. This has an almost negligible 
effect upon all of the above parameters (and their 
errors) except £> (which is poorly known). In Fig. 6 is 
plotted the variation of 5(^(0.38243 MeV) with h/h 
over a much wider range, including (72//o) = 0 which 
represents pure 90° scattering. The vertical lines limit 
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the acceptable range of I2/I0, and the two curves 
represent, for each value of I2/I0, the extreme values of 
5QE which the least-squares analysis defines. The area 
of crossed hachure is therefore the acceptable region of 
the plot, and it is seen that the uncertainty in the 
geometrical aspects of the calculation gives rise to an 
almost negligible additional uncertainty in the phase 
shift over what the statistics alone demand. I t is also 
clear from Fig. 6 that including the finite geometry in 
the analysis makes a significant difference in the ability 
to pin down the phase shift. 

A similar calculation is performed by varying P from 
—0.05 to +0.10 (see Sec. B) keeping h/h fixed at 
1.171X10-4. Again there is very little effect upon the 
best values of the parameters, but their uncertainties 
are increased. The effect upon 50

E (0.38243 MeV) is 
shown on Fig. 7 where the two curves represent, for 
each value of P, the extreme values of doE defined by the 
least-squares analysis. 

The net effect of the variations in I2/I0 and P, is the 
following set of parameters: 

£=0.38242±0.00026, 

£> = 0.142±0.043, 

£min(90°) = 0.38243±0.00020 MeV, 

^ ( 0 . 3 8 2 4 3 MeV) = 0.25501±0.00020 

with 60% of the errors in Em in and d0
E coming from 

statistics, and almost all the remainder arising from the 
spread in P . If this data were analyzed simultaneously 
with data at slightly higher energies, then P could be 
searched upon as another parameter and this would 
very probably lower the errors given above. The result 
for Emin agrees with the older experiment2 but is much 
more accurate. 

The scattering length and effective range are found 
to be 

a = - 7 . 8 0 ± 0 . 1 5 F 

r 0 = 2.65=bl . lF . 

As anticipated, a and r0 separately are determined very 
poorly from this experiment. Only the one linear com
bination 8, which is very accurately equal to the energy 
of the minimum of the 90° cross section, is determined 
well by the experiment. Indeed the entire uncertainty 
in a and rQ is due to the uncertainty in the orthogonal 
combination 3D. 

If the less reliable1 data at 0.37283 are included in the 
analysis, then (with I2/I0 at its best value, and P = 0 ) 
5(^(0.38243) = 0.25489, which is within the previously 
quoted error, but x 2 ~ 13.35. The one point in question 
contributes 7.40 to x2- The statistical error alone on this 
phase shift is ±0.00018. This best fit is indistinguish
able from the best fit which omits this point, on the 
scale used in Fig. 5. We choose as our final results those 
obtained without this point. 

If the Coulomb parameter n is computed using a non-

I 1 ' ' ' « 1 ' •—-•" « 1 • — ' ' • — T 

.2560 H 

.2540 h H 

I I I I JL-, I , ,__. ^ _ l l__J , , L_J 
-.05 O .05 .10 

P 

FIG. 7. For each assumed value of P, the least-squares fit 
defines a range of acceptable values of the s-wave phase shift 
8oE at the energy 0.38243 MeV, shown with hachure. The entire 
range of P shown was considered acceptable for the sake of evalu
ating the uncertainty in foE. 

relativistic calculation of the proton's laboratory 
velocity, then the phase shift is hE(0.38243) = 0.25493, 
which is within the previously quoted error, and x2 is 
almost identical with the value obtained above. Since 
this value of rj is even more removed from the value used 
above than what would have been obtained using twice 
the center-of-mass velocity of the incident proton 
(computed relativistically, see Ref. 7), it is clear that 
(as expected) this relativistic question is of practically 
no consequence at this energy, even for such an accurate 
experiment. 

If the entire analysis is performed omitting vacuum 
polarization, then $0 (0.38243) = 0.25409 and x2 is 
essentially unchanged from its value when vacuum 
polarization was included. This is as expected since, in 
general, it is not possible for cross sections over a very 
small energy and/or angular interval to distinguish 
whether or not vacuum polarization is present. Note, 
however, that the phase shift required to fit the data 
when vacuum polarization is omitted (written above 
with no superscript) is well outside the acceptable 
range for 8oE. 

From the method of admission of the hydrogen to the 
apparatus (see Fig. 4 of Ref. 1) the gas in the target 
area is expected to be below room temperature. A 
simple adiabatic expansion from 295°K and 3.65 Torr 
to 0.307 Torr would result in a temperature of 145°K. 
The actual temperature must be larger than this be
cause the gas enters as a jet, and the directed velocity 
is rapidly randomized; in addition there is some con
duction from the walls, and beam heating. Using the 
conversion factor, kindly supplied by Seagrave, that 
one unit of Q [see column (k), Table I, Ref. 1] equals 
1.25X1011 protons, and the fact that the normalization 
constant C in Eq. (17) is 37.8 F~2 (as determined by 
the least-squares analysis), we find that the temperature 
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required for the target gas is 243 °K, if the absolute 
value of the cross section is to be fit. In the sense that 
this temperature is between the crude limits stated 
above, there is no inconsistency. 

III. THE s-WAVE PHASE SHIFT UP TO 3 MeV 

If the phase shift given above is combined with the 
four j-wave phase shifts obtained from the most recent 
very precise Wisconsin data3,4 which extends from 1.4 
to 3.0 MeV, then the discussion in Ref. 5 shows that one 
has enough information to expand the effective range 
function beyond the shape-independent approximation. 
The following caution must be exercised concerning the 
significance of the coefficients in this expansion. 

The effective range function is an analytic function12 

of k2 in a region containing k2=0, and therefore has a 
power series expansion, Eq. (6), convergent in some 
finite circle. If one fits some experimentally determined 
values of X using a second-order polynomial (kA is the 
highest power), then are the coefficients so determined 
actually equal to the first three coefficients in the power 
series expansion? The answer is yes only if the higher 
terms in the power series are negligible at all of the 
experimental energies under consideration. One cannot 
decide this by just examining the experimentally 
determined phase shifts, which may have only enough 
information in them to enable three coefficients to be 
extracted. Rather, one must have some theoretical 
guidance as to whether or not the higher terms are 
negligible, e.g., by using a fairly realistic potential and 
seeing what it predicts for the higher terms. 

Using some low-energy s-wave phase shifts computed 
by Signell,13 which are the predictions of the Yale14 and 
Hamada- Johns ton15 potentials, we find that the k* term 
in the expansion is of comparable importance with the 
k* term at 3 MeV. This means that a second-order 
polynomial fit to the experimental phase shifts will not 
yield the first three coefficients of the power series 

TABLE II. Phase shifts used in effective range analysis. 

12 See H. Cornille and A. Martin, Nuovo Cimento 26,298 (1962), 
and D. Y. Wong and H. P. Noyes, Phys. Rev. 126,1866 (1962) for 
the Coulomb-plus-nuclear case. We believe, but have pot yet 
proven, that the effective range function employed in this paper 
which includes vacuum polarization is also analytic out to 10 
MeV laboratory energy (corresponding to one pion exchange). 

18 We thank Dr. Signell for kindly supplying us with these phase 
shifts. 

14 K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. McDonald, 
and G. Breit, Phys. Rev. 126, 881 (1962). 

15 T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962). 

expansion. This must be kept in mind when efforts are 
made to compare the numbers obtained from a second-
order polynomial fit to the predictions of some model. 
Rather than compare some intermediate quantities 
such as the effective range parameters, it would be 
better to compare the predicted phase shifts directly 
with the experimentally determined ones, or better 
still, the predicted cross sections with the experimental 
values. 

Bearing in mind the restricted significance to be 
attached to the coefficients obtained from polynomial 
fits, we have made linear, quadratic, and cubic fits to 
the phase shifts. Table I I shows the phase shifts which 
were used,16 and Table I I I shows the results of the three 
fits along with their x2 values and probabilities. 

I t is seen that the data do not contain any informa
tion about <2, and also that the value of P obtained from 
the quadratic fit probably has very little to do with the 
actual coefficient of the k4 term in the power series 
expansion of the effective range function. To the extent 
that a and ro are stable (against the effect of including 
higher powers of k2) one may assume that they cor
rectly represent the coefficients of the constant and 
linear terms in the series expansion. 

The linear and quadratic fits have been plotted on 
Fig. 8, along with the experimentally determined values 
of the effective range function using the phase shifts and 
uncertainties from Table I I . To make the distinction 
between the linear and quadratic fits apparent, we 
subtracted at each energy the value of the linear fit 
from each quantity, and then plotted the results on a 
greatly expanded vertical scale. The linear fit itself 
therefore appears as a horizontal line through the value 
zero. I t is plain from Fig. 8 that the experimentally 
determined values of the effective range function do 
exhibit curvature as a function of energy, of the type 
which goes with a positive value for the parameter P. 

2 r ~ i i i \ \ i—i—i—i—|—i—i—i—i—i—i—i—i—r 

t\ I i i i I i i i i I i i i i I i i i i ~ l 
0 1 2 3 4 

E(LAB)-MeV 

FIG. 8. Linear and quadratic fits to the five experimentally 
determined values of the effective range function. At each energy 
the value of the linear fit was subtracted from each quantity 
(linear fit, quadratic fit, and experimental value) and the results 
plotted on a greatly expanded vertical scale. The parameters 
associated with the two fits are shown. 

16 The four Wisconsin phases were taken from Ref. 4 using the 
relation KQ = 8QE+TO and values of TO from Ref. 5. 

•S l ab * 0 * 

(MeV) (deg) 

0.38243 14.611 ±0.011 
1.397 39.317±0.015 
1.855 44.346=fc0.021 
2.425 48.361±0.014 
3.037 51.013zfc0.020 

51.013zfc0.020
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TABLE III. Effective range parameters obtained from three different polynomial fits to the five very accurate low-energy phase shifts. 

Fit a(F) rQ(F) P Q x2fit P(x2>X2fit) 

Linear - 7.802 ±0.005 2.745=fc0.006 0 0 5.9 0.12 
Quadratic -7.815±0.008 2.795±0.025 0.028±0.014 0 1.74 0.42 
Cubic -7.823±0.012 2.866zfc0.078 0.114±0.093 0.17±0.18 0.81 0.37 

Although P is now delimited considerably better than 
the range which was permitted in Part II of the paper we 
have not gone back to reduce the errors quoted there, 
partly to keep the results of that analysis independent 
of the higher energy experiments, and also in an attempt 
to take some cognizance of the 'bad' point at 0.37283 
MeV. We do not know the proper way to do this, but 
think that the enlarged errors used in Part II should be 
kept partly for this reason. 

If the quadratic-fit parameters obtained above are 
used at 9.69 MeV. 90°c.m., with the same ^-wave 
assumptions as before, namely, one pion exchange 
tensor force and no spin-orbit force, the result is 
0"c.m. — 55.O mb/ster, compared with the experimental 
value17 of 54.6±0.4 mb/ster. This good agreement 
further demonstrates the distinction between a poly
nomial fit with a few terms and a power series, because 
the power series expansion of the effective range func
tion is known to diverge12 beyond 10 MeV, and therefore 
the first three terms of the series are not likely to be a 
good approximation to the entire series at 9.69 MeV. 

IV. CONCLUSIONS 

An analysis of cross-section data1 near 90 °c.m. (omitting 
the point at 0.37283 MeV) located the minimum of the 
90° cross section at £min=0.38243±0.00020 MeV, and 
the nuclear s-wave phase shift was evaluated: 5o^ 
= 0.25501±0.00020 at the precise energy 0.38243 MeV. 
Sixty percent of these uncertainties come from the 
statistics and most of the remainder from a permitted 
spread in the parameter P which was not searched upon. 
If the point at 0.37283 MeV (see discussion in Ref. 1 
about this point) is included in the analysis a poor 
statistical fit is obtained, but the phase shift is within 
the error quoted above. In the course of studying the 
effect of the geometry of the experiment1 and multiple 
scattering upon the results it was found that the effec
tive angle is 0c.m. = 91.24°, i.e., N{E) in Table I is 
proportional to the cross section at this angle. 

When the phase shift given above is combined with 
the four recent phase shifts obtained from Wisconsin 
data3-4 which extend from 1.4 to 3.0 MeV, it is found 
that a quadratic fit to the effective range function is 
definitely superior to a linear fit, and the parameters of 
the former fit are: a= -7.815dz0.008 F; r0= 2.795 
±0.025 F; and P=0.028=fc:0.014. Consideration of 
some realistic potentials shows that the next term (£6) 

in the expansion of the effective range function is of 
comparable importance with the k* term at 3 MeV, and 
therefore the parameters of the quadratic fit are not 
necessarily the ones associated with the power series 
expansion of the effective range function. The compar
ative stability of a and TQ as higher powers of k2 are 
introduced indicate that their values are quite close to 
the corresponding coefficients in the first two terms of 
the power series, but P may be quite different from the 
actual coefficient occurring in the kA term. 

Nevertheless one can use the quadratic fit as an 
accurate method for predicting the s-wave phase shift 
at low energies, and even at 9.69 MeV good agreement 
with the experimental17 90° cross section is obtained. 
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APPENDIX A: EMPIRICAL FORMULAS FOR VACUUM 
POLARIZATION QUANTITIES 

The first set of three formulas refer to the quantities 
which enter the s-wave effective range expansion. They 
are accurate to better than 1% in the energy range 
0.1<E<4.2, where E is the laboratory energy in MeV, 
and In is the natural logarithm. 

r o = _ 1.59167X 10-3+3.00470X 10~4 InE 
+3.02177X10-5ln2E-2.16455X10-5ln3E 
+3.73036X10-6ln4£, 

X0=-1.51975X10-3+5.971HX10-4ln£ 
-1.12282 X10-4 ln2E+5.49672 X 10~6 ln3£ 

+5.05571X10-6ln4£, 

/o=-2.66203X10~3+5.48719X10-5ln£ 
+2.95002X 10-4 ln2£-4.52868X 10~6 ln3£ 
-8.35377X10-6ln4£. 

The next set of formulas calculate the real and 
imaginary parts of the (unsymmetrized) vacuum 
polarization scattering amplitude. The formulas are 
presented in the form of corrections to the amplitude 
calculated by Durand,18 These corrections vanish as the 

*7 L, H. Johnston and D. E. Young, Phys. Rey, 116, 989 (1959). 18 L. Durand, III, Phys. Rev. 108. 1597 (1957). 

-7.815dz0.008
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energy increases. The numbers within the quotation 
marks are equation numbers in Durand's paper.18 

v=2K2/k2; (2K)~1=h/2mc= 193.1X10"13 cm, 

6 is center-of-mass scattering angle, 

#=cos0, 

Re[^^p .(<9)] = C u 12 .2 , , + u 19 .2 , , + a 20 , , ] 

X | l+(2 .6843-2 .3237x--0 .9 i2x 2 ) 

\0.255161/ J 

M*/v .p . (» ) ] 

= "19.1 , , +[-6.9231-3.6319x-8.3669x 2 ~7.2723x 3 ] 

/ v \ 2 9 

xio-5 ) . 
\0.255161/ 

F(x) in "12.2" is obtained from "12.3 '" and "12.4". 
These amplitude formulas are valid above 200 keV 

with the following restrictions on angle: 
At E>1A MeV, the corrections are all small and 

should be set equal to zero forward of 20°c.m. The 
uncorrected formulas are good between 10° and 20°. 

At E=0.4 MeV, the corrections are no good forward 
of 30°. 

APPENDIX B: THE 90° COULOMB AND NUCLEAR 
s-WAVE AMPLITUDES 

A simple physical picture of the main features of the 
low-energy scattering amplitude at 90°c.m. can be 
gotten if vacuum polarization is omitted from consider
ation. For then the symmetrized (singlet) nuclear 
amplitude (assumed to be pure s-wave) can be written 
as 

ikfN=sindei8, (Bl) 

where 8 is the s-wave phase shift. The symmetrized 
(singlet) Coulomb amplitude at 90°c.m. is 

P / c (90° ) = -~r 7^ l n 2 . (B2) 

As the real number 8 increases from zero (with increas
ing energy) sinSe*5 moves in the complex plane, along 
the arc of a circle whose center is at 0.5i and whose 
radius is 0.5. This is shown on Fig. 9. As the real number 
7? decreases (with increasing energy), r]eiv ln2, which from 
Eq. (B2) is proportional to the negative of the 90° 
Coulomb amplitude, moves inward along an Archi
medes spiral in the complex plane. This is also shown on 

FIG. 9. The complex plane showing \k multiplied by the sym
metrized singlet nuclear s-wave amplitude and the same thing for 
the negative of the 90° Coulomb amplitude. The straight line 
segments, labeled with the laboratory energy of the incident 
proton, connect corresponding points on the two curves and 
represent \k multiplied by the sum of the Coulomb and nuclear 
amplitudes. The arrows show how the points move with increasing 
energy. 

Fig. 9. For a given value of the energy, rj has a definite 
value corresponding to a fixed point on the spiral. The 
nuclear-physics problem is to determine where one is on 
the circle for that same value of the energy, i.e., what 
8(E) is. A straight line connecting the two points in 
question would be proportional to the sum of the nuclear 
and Coulomb amplitudes, since r\eiyi ln2 is proportional 
to the negative of the Coulomb amplitude. Even without 
knowing the exact variation of 8 with E, just from the 
knowledge that the nuclear and Coulomb points are 
moving in opposite directions it is clear that there will 
be an energy at which the two points will 'pass by' each 
other, giving a minimum in the total amplitude. If this 
occurs at a small value of 77 then 5 —17 at the minimum. 
This result has been known for a long time.2'19 

One can refine this estimate by examining the geom
etry of Fig. 9 more closely, but the result will be altered 
when vacuum polarization is included. The analysis 
given in the body of the paper shows that at the mini
mum of the 90° cross section (0.3824 MeV), 77 = 0.2557 
and 8oE=0.2550. These two points have been connected 
on Fig. 9 with a straight line segment which is labeled 
with the energy. The same thing has been done for the 
four Wisconsin energies, and the resulting picture of 
how the total 90° amplitude varies with energy, pro
vides a somewhat deeper understanding of the variation 
of the 90° cross section shown on Fig. 1. 

19 H. A. Bethe and P. Morrison, Elementary Nuclear Theory 
(John Wiley & Sons, Inc., New York, 1956), 2nd ed., pp. 95-96. 


